Geweegde Moving Gemiddelde Die geweegde bewegende gemiddelde plekke meer belang op onlangse prysbewegings dus die geweegde bewegende gemiddelde reageer vinniger op prysveranderings as die gewone Eenvoudige bewegende gemiddelde (sien: Eenvoudige bewegende gemiddelde). 'N Basiese voorbeeld (3-tydperk) van hoe die Geweegde bewegende gemiddelde bereken word hieronder aangebied: Pryse vir die afgelope 3 dae 5, 4, en 8. Aangesien daar 3 periodes, die mees onlangse dag (8) kry 'n gewig van 3, die tweede onlangse dag (4) ontvang 'n gewig van 2, en die laaste dag van die 3-tydperke (5) ontvang 'n gewig van net een. Die berekening is soos volg: (3 x 8) (2 x 4) (1 x 5) / 6 6.17 Die geweegde bewegende gemiddelde waarde van 6.17 vergelyk word met die eenvoudige bewegende gemiddelde berekening van 5,67. Let op hoe die groot prysverhoging van 8 wat plaasgevind het op die mees onlangse dag beter is weerspieël in die Geweegde bewegende gemiddelde berekening. Die grafiek hieronder van Wal-Mart voorraad illustreer die visuele verskil tussen 'n 10-dag Geweegde bewegende gemiddelde en 'n 10-dag Eenvoudige bewegende gemiddelde: Potensiële koop en verkoop seine vir die Geweegde bewegende gemiddelde aanwyser is in diepte bespreek met die eenvoudige bewegende gemiddelde aanwyser (sien: eenvoudige bewegende gemiddelde).Weighted bewegende Gemiddeldes: die Basics Oor die jare, het tegnici twee probleme met die eenvoudige bewegende gemiddelde gevind. Die eerste probleem lê in die tyd van die bewegende gemiddelde (MA). Die meeste tegniese ontleders glo dat die prys aksie. die opening of sluiting voorraad prys, is nie genoeg om op te hang vir goed voorspel koop of te verkoop seine van die MA crossover aksie. Om hierdie probleem op te los, het ontleders nou meer gewig toeken aan die mees onlangse prys data deur gebruik te maak van die eksponensieel stryk bewegende gemiddelde (EMA). (Meer inligting in die ondersoek van die eksponensieel geweeg bewegende gemiddelde.) 'N voorbeeld Byvoorbeeld, met behulp van 'n 10-dag MA, sou 'n ontleder die sluitingsprys van die 10de dag te neem en vermeerder hierdie getal deur 10, die negende dag van nege, die agtste van dag tot agt en so aan tot die eerste van die MA. Sodra die totale bepaal, sou die ontleder dan verdeel die aantal deur die byvoeging van die vermenigvuldigers. As jy die vermenigvuldigers van die 10-dag MA voorbeeld te voeg, die getal is 55. Hierdie aanwyser is bekend as die lineêr geweeg bewegende gemiddelde. (Vir verwante leesstof, check Eenvoudige bewegende gemiddeldes Maak Trends uitstaan.) Baie tegnici is ferm gelowiges in die eksponensieel stryk bewegende gemiddelde (EMA). Hierdie aanwyser is verduidelik in so baie verskillende maniere waarop dit verwar studente en beleggers sowel. Miskien is die beste verduideliking kom van John J. Murphy tegniese ontleding van die finansiële markte, (uitgegee deur die New York Instituut van Finansies, 1999): Die eksponensieel stryk bewegende gemiddelde adresse beide van die probleme wat verband hou met die eenvoudige bewegende gemiddelde. Eerstens, die eksponensieel stryk gemiddelde ken 'n groter gewig aan die meer onlangse data. Daarom is dit 'n geweegde bewegende gemiddelde. Maar terwyl dit ken mindere belang vir verlede prys data, beteken dit sluit in die berekening al die data in die lewe van die instrument. Daarbenewens het die gebruiker in staat is om die gewig te pas by mindere of meerdere gewig te gee aan die mees onlangse dae prys, wat by 'n persentasie van die vorige dae waarde. Die som van beide persentasie waardes voeg tot 100. Byvoorbeeld, die laaste dae die prys kan 'n gewig van 10 (0,10), wat by die vorige dae gewig van 90 (0,90) opgedra. Dit gee die laaste dag 10 van die totale gewig. Dit sou die ekwivalent van 'n 20-dag gemiddeld deur die laaste dae die prys 'n kleiner waarde van 5 (0,05) wees. Figuur 1: eksponensieel stryk bewegende gemiddelde Bogenoemde grafiek toon die Nasdaq saamgestelde indeks van die eerste week in Augustus 2000 tot 1 Junie 2001 As jy duidelik kan sien, die EMO, wat in hierdie geval is die gebruik van die sluitingsprys data oor 'n tydperk van nege dae, het definitiewe verkoop seine op die 8 September (gekenmerk deur 'n swart afpyltjie). Dit was die dag toe die indeks het onder die vlak 4000. Die tweede swart pyl toon 'n ander af been wat tegnici eintlik verwag het nie. Die Nasdaq kon genoeg volume en belangstelling van die kleinhandel beleggers na die 3000 merk breek nie genereer. Dit dan duif weer af na onder uit by 1619,58 op April 4. Die uptrend van 12 April is gekenmerk deur 'n pyl. Hier is die indeks gesluit 1,961.46, en tegnici begin institusionele fondsbestuurders begin om af te haal 'n paar winskopies soos Cisco, Microsoft en 'n paar van die energie-verwante kwessies te sien. (Lees ons verwante artikels: Moving Gemiddelde Koeverte:. Verfyning 'n gewilde Trading Tool en bewegende gemiddelde Bounce) 'n Persoon wat handel dryf afgeleides, kommoditeite, effekte, aandele of geldeenhede met 'n hoër-as-gemiddelde risiko in ruil vir. quotHINTquot is 'n akroniem wat staan vir vir quothigh inkomste nie taxes. quot Dit is van toepassing op 'n hoë-verdieners wat verhoed dat die betaling federale inkomste. 'N Mark outeur wat koop en verkoop baie kort termyn korporatiewe effekte genoem kommersiële papier. 'N papier handelaar is tipies. 'N bestelling geplaas met 'n makelaar om 'n sekere aantal aandele te koop of te verkoop teen 'n bepaalde prys of beter. Die onbeperkte koop en verkoop van goedere en dienste tussen lande sonder die oplegging van beperkings soos. In die sakewêreld, 'n buffel is 'n maatskappy, gewoonlik 'n aanloop wat nie 'n gevestigde prestasie het nie record. What039s die verskil tussen bewegende gemiddelde en geweegde bewegende gemiddelde A 5-tydperk bewegende gemiddelde, gebaseer op die pryse hierbo, sou word bereken deur die volgende formule: op grond van die bostaande vergelyking, het die gemiddelde prys oor die bogenoemde tydperk was 90,66. Die gebruik van bewegende gemiddeldes is 'n effektiewe metode vir die uitskakeling van sterk prysskommelings. Die sleutel beperking is dat datapunte vanaf ouer data nie anders word geweeg as datapunte naby die begin van die datastel. Dit is hier waar geweegde bewegende gemiddeldes 'n rol speel. Geweegde gemiddeldes toewys 'n swaarder gewig meer huidige data punte omdat hulle meer relevant as datapunte in die verre verlede. Die som van die gewig moet optel tot 1 (of 100). In die geval van die eenvoudige bewegende gemiddelde, is die gewigte eweredig versprei, wat is die rede waarom hulle nie in die tabel hierbo getoon. Sluitingsprys van AAPL Die geweegde gemiddelde is bereken deur vermenigvuldig die gegewe prys deur sy verwante gewig en dan die WHALM waardes. In die voorbeeld hierbo, sal die geweegde 5-daagse bewegende gemiddelde 90,62. In hierdie voorbeeld is die onlangse data punt die hoogste gewig uit 'n arbitrêre 15 punte. Jy kan die waardes weeg uit enige waarde goeddink jou. Die laer waarde van die geweegde gemiddelde persentasie van relatief tot die eenvoudige gemiddelde dui die onlangse verkoop druk kan meer betekenisvol as 'n paar handelaars verwag word. Vir die meeste handelaars, die gewildste keuse by die gebruik van geweeg bewegende gemiddeldes is om 'n hoër gewig gebruik vir die afgelope waardes. (Vir meer inligting, kyk na die bewegende gemiddelde Tutoriaal) Lees meer oor die verskil tussen eksponensiële bewegende gemiddeldes en geweegde bewegende gemiddeldes, twee glad aanwysers dat. Lees Antwoord Die enigste verskil tussen hierdie twee tipes bewegende gemiddelde is die sensitiwiteit elkeen toon veranderinge in die gebruik van data. Lees Antwoord Sien waarom bewegende gemiddeldes het bewys voordelig vir handelaars en ontleders en nuttig te wees wanneer dit toegepas word om die prys kaarte en. Lees Antwoord Leer hoe handelaars en beleggers gebruik geweegde Alpha om momentum van 'n aandele prys te identifiseer en of pryse hoër sal beweeg. Lees Antwoord Hier is die mees algemene gekies tydperke gebruik deur handelaars en markanaliste in die skep van bewegende gemiddeldes te trek as tegniese. Lees Antwoord verstaan hoe om die gewigte van die verskil koste van kapitaal en hoe hierdie berekening word gebruik om te bepaal bereken. Lees Beantwoord bewegende gemiddelde vooruitskatting Inleiding. Soos jy kan raai ons is op soek na 'n paar van die mees primitiewe benaderings tot vooruitskatting. Maar hopelik dit is ten minste 'n waardevolle inleiding tot sommige van die rekenaar kwessies wat verband hou met die implementering van voorspellings in sigblaaie. In dié opsig sal ons voortgaan deur te begin by die begin en begin werk met bewegende gemiddelde voorspellings. Bewegende gemiddelde voorspellings. Almal is vertroud met bewegende gemiddelde voorspellings ongeag of hulle glo hulle is. Alle kollege studente doen dit al die tyd. Dink aan jou toetspunte in 'n kursus waar jy gaan vier toetse gedurende die semester het. Kom ons neem aan jy het 'n 85 op jou eerste toets. Wat sou jy voorspel vir jou tweede toetstelling Wat dink jy jou onderwyser sou Ongeag voorspel vir jou volgende toetstelling Wat dink jy jou vriende kan voorspel vir jou volgende toetstelling Wat dink jy jou ouers kan voorspel vir jou volgende toetstelling al die blabbing jy kan doen om jou vriende en ouers, hulle en jou onderwyser is baie geneig om te verwag dat jy iets kry in die gebied van die 85 wat jy nou net gekry. Wel, nou kan aanneem dat ten spyte van jou self-bevordering van jou vriende, jy oorskat jouself en vind jy minder vir die tweede toets te studeer en so kry jy 'n 73. Nou wat is al die betrokkenes en onbekommerd gaan verwag jy sal op jou derde toets te kry Daar is twee baie waarskynlik benaderings vir hulle om 'n skatting, ongeag of hulle dit sal met julle deel te ontwikkel. Hulle mag sê om hulself, quotThis man is altyd waai rook oor sy intelligensie. Hes gaan na 'n ander 73 as hes gelukkig te kry. Miskien sal die ouers probeer meer ondersteunend te wees en sê, quotWell, tot dusver youve gekry 'n 85 en 'n 73, so miskien moet jy dink oor hoe om oor 'n (85 73) / 2 79. Ek weet nie, miskien as jy minder gedoen partytjies en werent swaaiende die mol al oor die plek en as jy begin doen 'n baie meer studeer jy kan kry 'n hoër score. quot Beide van hierdie vooruitskattings eintlik bewegende gemiddelde voorspellings. Die eerste is net met jou mees onlangse telling tot jou toekomstige prestasie te voorspel. Dit staan bekend as 'n bewegende gemiddelde vooruitskatting gebruik van een tydperk van data. Die tweede is ook 'n bewegende gemiddelde voorspelling, maar die gebruik van twee periodes van data. Kom ons neem aan dat al hierdie mense breker op jou groot gees soort het dronk jy af en jy besluit om goed te doen op die derde toets vir jou eie redes en 'n hoër telling in die voorkant van jou quotalliesquot sit. Jy neem die toets en jou telling is eintlik 'n 89 Almal, insluitende jouself, is beïndruk. So nou het jy die finale toets van die semester kom en soos gewoonlik jy voel die behoefte om almal te dryf in die maak van hul voorspellings oor hoe sal jy doen op die laaste toets. Wel, hopelik sien jy die patroon. Nou, hopelik kan jy die patroon te sien. Wat glo jy is die mees akkurate Whistle Terwyl ons werk. Nou moet ons terugkeer na ons nuwe skoonmaak maatskappy wat begin is deur jou vervreemde halfsuster genoem Whistle Terwyl ons werk. Jy het 'n paar verkope verlede data wat deur die volgende artikel uit 'n sigblad. Ons bied eers die data vir 'n drie tydperk bewegende gemiddelde skatting. Die inskrywing vir sel C6 moet wees Nou kan jy hierdie sel formule af na die ander selle C7 kopieer deur C11. Let op hoe die gemiddelde beweeg oor die mees onlangse historiese data, maar gebruik presies die drie mees onlangse tye beskikbaar wees vir elke voorspelling. Jy moet ook sien dat ons nie regtig nodig om die voorspellings vir die afgelope tyd maak om ons mees onlangse voorspelling ontwikkel. Dit is beslis anders as die eksponensiële gladstryking model. Ive ingesluit die quotpast predictionsquot omdat ons dit sal gebruik in die volgende webblad om voorspellingsgeldigheid meet. Nou wil ek die analoog resultate aan te bied vir 'n periode van twee bewegende gemiddelde skatting. Die inskrywing vir sel C5 moet wees Nou kan jy hierdie sel formule af na die ander selle C6 kopieer deur C11. Let op hoe nou net die twee mees onlangse stukke historiese data gebruik vir elke voorspelling. Weereens het ek die quotpast predictionsquot vir illustratiewe doeleindes en vir latere gebruik in vooruitskatting validering ingesluit. Sommige ander dinge wat van belang om te let. Vir 'n m-tydperk bewegende gemiddelde voorspelling net die m mees onlangse data waardes word gebruik om die voorspelling te maak. Niks anders is nodig. Vir 'n m-tydperk bewegende gemiddelde voorspelling, wanneer quotpast predictionsquot, agterkom dat die eerste voorspelling kom in periode m 1. Beide van hierdie kwessies sal baie belangrik wees wanneer ons ons kode te ontwikkel. Die ontwikkeling van die bewegende gemiddelde funksie. Nou moet ons die kode vir die bewegende gemiddelde voorspelling dat meer buigsaam kan word ontwikkel. Die kode volg. Let daarop dat die insette is vir die aantal periodes wat jy wil gebruik in die vooruitsig en die verskeidenheid van historiese waardes. Jy kan dit stoor in watter werkboek wat jy wil. Funksie MovingAverage (Historiese, NumberOfPeriods) as 'n enkele verkondig en inisialisering veranderlikes Dim punt Soos Variant Dim Counter As Integer Dim Akkumulasie as 'n enkele Dim HistoricalSize As Integer Inisialiseer veranderlikes Counter 1 Akkumulasie 0 bepaling van die grootte van Historiese skikking HistoricalSize Historical. Count Vir Counter 1 Om NumberOfPeriods opbou van die toepaslike aantal mees onlangse voorheen waargeneem waardes Akkumulasie Akkumulasie Historiese (HistoricalSize - NumberOfPeriods toonbank) MovingAverage Akkumulasie / NumberOfPeriods die kode sal in die klas verduidelik. Jy wil die funksie te posisioneer op die sigblad sodat die resultaat van die berekening verskyn waar dit wil die following. MetaTrader 4 - Indicators Bewegende Gemiddeldes, MA - aanwyser vir Meta Trader 4 Die bewegende gemiddelde Tegniese aanwyser toon die gemiddelde instrument prys waarde vir 'n sekere tydperk van die tyd. Wanneer 'n mens word bereken dat die bewegende gemiddelde, een gemiddeldes uit die instrument prys vir hierdie tydperk. As die prys veranderinge, sy bewegende gemiddelde óf verhoog, of verminder. Daar is vier verskillende tipes bewegende gemiddeldes: Eenvoudige (ook na verwys as Rekenkundige), eksponensiële, Reëlmatige en Lineêre Geweegde. Bewegende gemiddeldes kan bereken word vir enige opeenvolgende datastel, insluitend die opening en sluiting pryse, hoogste en laagste pryse, handel volume of enige ander aanwysers. Dit is dikwels die geval wanneer dubbel bewegende gemiddeldes gebruik. Die enigste ding wat waar bewegende gemiddeldes van verskillende tipes divergeer aansienlik van mekaar, is wanneer gewig koëffisiënte, wat die jongste data is opgedra, is anders. In geval praat ons van 'n eenvoudige bewegende gemiddelde, alle pryse van die tydperk ter sprake, is gelyk in waarde. Eksponensiële en Lineêre Geweegde bewegende gemiddeldes heg meer waarde aan die nuutste pryse. Die mees algemene manier om die interpretasie van die prys bewegende gemiddelde is om sy dinamika vergelyk met die prys aksie. Wanneer die instrument prys bo sy bewegende gemiddelde styg, blyk 'n koopsein as theprice val onder sy bewegende gemiddelde, wat ons het, is 'n sell sein. Dit handel stelsel, wat gebaseer is op die bewegende gemiddelde, is nie ontwerp om toegang tot die mark te voorsien reg in sy laagste punt, en sy uitgang regs op die piek. Dit maak dit moontlik om op te tree volgens die volgende tendens: te koop kort nadat die pryse die bodem bereik, en om gou te verkoop nadat die pryse hul hoogtepunt bereik het. Berekening Eenvoudige bewegende gemiddelde (SMA) Eenvoudige, met ander woorde, rekenkundige bewegende gemiddelde word bereken deur 'n opsomming van die pryse van sluiting instrument oor 'n sekere aantal enkele periodes (byvoorbeeld 12 uur). Hierdie waarde word dan gedeel deur die getal van sodanige tydperke. SMA som (naby, N) / N Waar: N is die aantal periodes berekening. Eksponensiële bewegende gemiddelde (EMA) eksponensieel stryk bewegende gemiddelde word bereken deur die bewegende gemiddelde van 'n sekere deel van die huidige sluitingsprys op die vorige waarde. Met eksponensieel stryk bewegende gemiddeldes, die jongste pryse is meer werd. P-persent eksponensiële bewegende gemiddelde sal lyk: Waar: BESLOTE (i) die prys van die huidige tydperk sluiting EMO (i-1) eksponensieel bewegende gemiddelde van die vorige tydperk sluiting P die persentasie van die gebruik van die prys waarde. Reëlmatige bewegende gemiddelde (SMMA) Die eerste waarde van hierdie stryk bewegende gemiddelde word bereken as die eenvoudige bewegende gemiddelde (SMA): sum1 som (naby, N) Die tweede en daaropvolgende bewegende gemiddeldes word bereken volgens die formule: Waar: sum1 is die totale bedrag van die sluiting van pryse vir n periodes SMMA1 is die reëlmatige bewegende gemiddelde van die eerste bar SMMA (i) is die reëlmatige bewegende gemiddelde van die huidige bar (behalwe vir die eerste een) sluit (i) is die huidige sluitingsprys N is die glad tydperk. Lineêre geweegde bewegende gemiddelde (LWMA) In die geval van geweegde bewegende gemiddelde, die jongste data is meer werd as meer vroeë data. Geweegde bewegende gemiddelde bereken word deur elkeen van die sluitingstyd pryse binne die oorweeg reeks, deur 'n sekere gewig koëffisiënt. LWMA som (Close (i) i, N) / som (i, N) Waar: som (i, N) is die totale bedrag van die gewig koëffisiënte. Bewegende gemiddeldes kan ook toegepas word op aanwysers. Dit is hier waar die interpretasie van aanwyser bewegende gemiddeldes is soortgelyk aan die interpretasie van die prys bewegende gemiddeldes: As die aanwyser styg bo sy bewegende gemiddelde, wat beteken dat die stygende aanwyser beweging is waarskynlik om voort te gaan: as die aanwyser val onder sy bewegende gemiddelde, hierdie beteken dat dit waarskynlik om voort te gaan gaan afwaarts. Hier is die tipes bewegende gemiddeldes op die grafiek: Eenvoudige bewegende gemiddelde (SMA) Eksponensiële bewegende gemiddelde (EMA) Reëlmatige bewegende gemiddelde (SMMA) Lineêre Geweegde bewegende gemiddelde (LWMA)
No comments:
Post a Comment